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Abstract— Sparse Matrix is a matrix consisting of very few 
non-zero entries. Large sparse matrices are often used in 
engineering and scientific operations. Especially sparse-matrix 
vector multiplication is an important operation for solving 
linear system and partial differential equations. However, 
there is a possibility that even though the matrix is partitioned 
and stored appropriately, the performance achieved is not 
significant. Hence a need arises to address these issues. System 
proposes an integrated analytical and profile based 
performance modelling that accurately predicts the kernel 
execution time of various SpMV CUDA kernels and also that 
of a given target sparse-matrix. Based on this the designed 
optimal solution auto-selection algorithm automatically 
reports the SpMV optimal solution for a target sparse-matrix. 
System was evaluated on NVIDIA Tesla C2050 and significant 
results were obtained. Proposed system would like enhance the 
existing system by trying the same on different SpMV CUDA 
kernels as well look for optimization. Proposed system would 
also like to try and execute the same on multi-GPU kernels. 
Proposed system would also like to evaluate the existing 
system on other NVIDIA GPU such as the NVIDIA GeForce 
GT 750M card. This paper presents a survey of various 
performance modelling and optimization techniques for 
SpMV CUDA kernels on GPUs. It also presents a survey of the 
various SpMV CUDA kernel implementation techniques.   
 
Keywords—SpMV, GPU, CUDA, performance modelling, 
optimization. 

I. INTRODUCTION 

    Sparse Matrix is a matrix consisting of very-few non-
zero elements. Large sparse-matrices are used in various 
engineering and scientific applications. Sparse matrix-
vector multiplication is a very important operation when it 
comes to solving linear system and partial differential 
equations. When solving matrix-vector multiplication 
operations the term Ax of the equation Ax=y needs to be 
computed iteratively, which is tedious when it comes to 
large sparse-matrices. Hence a need for storing and 
partitioning the matrix arises. Again after storing and 
partitioning the matrix, the performance achieved is not 
significant. Hence the need to address these issues as well. 
Various SpMV CUDA kernel implementations, 
performance modelling and optimization techniques have 
been proposed. 
    In this paper, the following sections present an extensive 
literature survey of the various performance modelling and 
optimization techniques for SpMV CUDA kernels on GPUs. 
It also presents a survey of various SpMV CUDA kernel 

implementations techniques on GPUs. A kernel in CUDA is 
a simple single program implemented and executed using 
parallel thread. But a prior to it a brief information on 
sparse-matrix, matrix storage and sparse-matrix vector 
multiplication is presented. 
A. Sparse Matrix 
    A sparse matrix is a matrix in which very few elements 
are non-zero as shown in figure 1. On the contrary, if very 
few elements are zero, then the matrix is a dense matrix. 
The fraction of zero elements in a matrix is called the 
sparsity while the fraction of non-zero elements is called 
dense. Sparsity is used in combinatorics and applications 
like network theory. Large sparse matrices are often used in 
engineering and scientific operations. Special algorithms 
and data structures are required to store and manipulate 
sparse-matrices on a computer. This is because standard 
dense-matrix structures and algorithms are slow and 
inefficient. Sparse data is more easily compressed and thus 
require significantly less storage. [24].  
B. How is a sparse-matrix stored? 
    A matrix is stored as a two-dimensional array. Each entry 
in the array represents an element   of the matrix and 
is accessed by the two indices  and  where,  is the row 
index, numbered from top to bottom, and  is the column 
index, numbered from left to right. For a  matrix, the 
amount of memory required to store the matrix in this 
format is proportional to . [24]. 
C. Sparse Matrix Vector Multiplication 
    Sparse matrix-vector multiplication (SpMV) of the form 
y = Ax is a widely used computational kernel existing in 
many scientific applications. The input matrix A is sparse. 
The input vector x and the output vector y are dense. In case 
of repeated y = Ax operation involving the same input 
matrix A but possibly changing numerical values of its 
elements, A can be preprocessed to reduce both the parallel 
and sequential run time of the SpMV kernel. [25]. 

II. RELATED WORK 

A. SpMV CUDA Kernel Implementations 

     J. Bolz et al. [5]. This work proposes and implements 
two basic SpMV CUDA computational kernels viz. a sparse 
matrix conjugate gradient solver and a regular-grid 
multigrid solver. Through this work it was observed that 
real-time applications ranging from mesh smoothing and 
parameterization to fluid solvers and solid mechanics can 
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greatly benefit from these. As a matter of proof the 
implementation was used in the example applications of 
geometric flow and fluid simulation running on NVIDIA’s 
GeForce FX. [5]. 

 
Figure.1. Sparse matrix representations for a simple example matrix A. 
Padding entries (marked _) are set to zero. Courtesy: Bell and Garland [2]. 

    
    N. Bell and M. Garland [2]. This work proposed and 
implemented SpMV CUDA kernels for some well-known 
storage formats such as DIA, CSR, ELL, COO and HYB. 
[2]. They are as follows:   
 
1) Diagonal Format 
     The diagonal format is formed by two arrays: data and 
offsets. The data array stores the nonzero values, and the 
offsets array, stores the offset of each diagonal from the 
main diagonal. Diagonals above the main diagonal have 
positive offsets and below the main diagonal have negative 
offsets, accordingly. [2]  
2) ELL Format 
    The ELL format is more general than DIA as the non-
zero columns do not follow any particular pattern. It is in 
particular well-suited for vector architectures. An  
sparse matrix with at the most K nonzeros per row is stored 
as a dense  array data of nonzeros and array indices 
of column indices. All rows are zero-padded to length K. [2] 
3) Compressed Sparse Row Format 
     The compressed sparse row (CSR) format explicitly 
stores column indices and nonzero values in arrays indices 
and data. A third array of row pointers, ptr, allows the CSR 
format to represent rows of varying length. [2] 
4) Coordinate Format 
The coordinate (COO) format is a storage scheme. The 
arrays: row, indices, and data store the row indices, column 
indices, and values, respectively, of the nonzero entries. It 
is assumed that entries with the same row index are stored 
contiguously. [2] 
 

5) Hybrid Format 
    The ELLPACK format is well-suited to vector and SIMD 
architectures, but its efficiency rapidly degrades when the 
number of nonzeros per matrix row varies. On the contrary, 
the storage efficiency of the COO format is invariant to the 
distribution of nonzeros per row, and the use of segmented 
reduction makes its performance largely invariant as well. 
To gain the advantages of both, it is combined into a hybrid 
ELL/COO format. The purpose of the hybrid (HYB) format 
is to store the typical number of nonzeros per row in the 
ELL data structure and the remaining entries of exceptional 
rows in the COO format. The typical number of nonzeros 
per row is often known a priori, as in the case of manifold 
meshes, and the ELL portion of the matrix is readily 
extracted. However, in the general case this number must be 
determined directly from the input matrix. [2] 
 
B. SpMV Optimization Techniques 
     The following is a survey of various SpMV 
Optimization techniques. 
     P. Guo et al. [4]. In this work, an innovative 
performance-model driven approach for partitioning sparse 
matrix into appropriate formats, and auto-tuning 
configurations of CUDA kernels to improve the 
performance of SpMV on GPUs is presented. The 
following are the features of the system:  (a) It proposes an 
empirical CUDA performance model to predict the 
execution time of SpMV CUDA kernels. (b) It designs and 
implements a model-driven partitioning framework to 
predict how to partition the target sparse matrix into one or 
more partitions and transform each partition into 
appropriate storage format, which is based on the fact that 
the different storage formats of sparse matrix can 
significantly affect the performance of SpMV, and  (c) It 
integrates the model-driven partitioning with the existing 
auto-tuning framework [3] to automatically adjust CUDA-
specific parameters to optimize performance on specific 
GPUs. The approach was evaluated on 14 matrices using 
NVIDIA’s GeForce GTX 295 and it was observed that 
compared to the NVIDIA's existing implementations, the 
approach showed a substantial performance improvement. 
It had 222%, 197%, and 33% performance improvement on 
the average for CSR vector kernel, ELL kernel and HYB 
kernel, respectively. [4] 
     J. Kurzak, W. Alvaro, and J. Dongarra [6].In this work, 
optimized single precision matrix multiplication kernels are 
presented for the short vector Single Instruction Multiple 
Data architecture of the Synergistic Processing Element of 
IBM’s CELL BE processor. The operations 

and are implemented for 
matrices of size elements. In the former case a 
performance of 24.09 Gflop/s which is 94% of peak 
performance is reported whereas in the latter case the 
performance of 25.55 Gflop/s is reported, or 99.80% of the 
peak, using as little as 5.9 kB of storage for code and 
auxiliary data structures. [6].   
    E. J. Im, K. Yelick, and R. Vuduc [7]. In this work, the 
optimization of two operations viz. a sparse matrix times a 
dense vector and a sparse matrix times a set of dense 
vectors are discussed. It was found that register level 
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optimizations are effective for matrices arising in certain 
scientific simulations, especially finite-element problems. 
The cache level optimizations find importance when the 
vector used in multiplication is larger than the cache size, 
especially for matrices in which the nonzero structure is 
random. For applications involving multiple vectors, 
reorganizing the computation to perform the entire set of 
multiplications as a single operation produces significant 
speedups. Also the different optimizations and parameter 
selection techniques are described. These techniques are 
evaluated on several machines using over 40 matrices taken 
from broad set of application domains. The results showed 
speedups of up to 4x  for the single vector case and up to 
10x for the multiple vector case. [7] 
    M.M. Baskaran and R. Bordawekar [8]. In this work, the 
various challenges in developing a high-performance 
SpMV Kernel on CUDA GPUs are evaluated using the 
CUDA programming model and also optimizations for the 
same are proposed. The optimizations included: (a) 
exploitation of synchronization-free parallelism, (b) 
optimization of thread mapping based on the affinity 
towards optimal memory access pattern, (c) optimized off-
chip memory access to tolerate the high access latency, (d) 
exploitation of data reuse. The system was evaluated on two 
classes of NVIDIA GPUs viz. GeForce 8800 GTX and 
GeForce GTX 280. The system performance was compared 
with that of existing parallel SpMV implementations viz. (a) 
one from NVIDIA’s SpMV Library, (b) one from 
NVIDIA’s CUDPP library, and (c) one implemented using 
optimal segmented scan primitive. It was found that the 
system outperformed the CUDPP and segmented scan 
implementations by a factor of 2 to 8. It was also found that 
the system achieved 15% improvement over NVIDIA’s 
SpMV Library. [8]. 
    J. Demmel et al. [9]. In this work, two software systems 
viz.  ATLAS (Automatically Tuned Linear Algebra 
Software) and BeBOP (formerly known as SPARSITY 
version 2) are presented for dense and sparse linear algebra 
kernels respectively. These softwares’ use heuristic search 
strategies for exploring the architecture parameter space. 
For optimization of these kernels the AEOS (Automated 
Empirical Optimization of Software) is presented for both 
the softwares ATLAS and BeBOP, for dense and sparse 
operations respectively.  It was found that through a 
combination of automatic code generation and hand-coded 
optimizations these packages deliver several factors 
improvement over what even the best of compilers can 
achieve on reference implementations. The SALSA 
package which uses statistical data modelling as a tool for 
automatic algorithm choice is also presented. The results 
obtained showed great promise for the future of portable 
adaptive high-performance libraries. [9]. 
    P. Guo and L. Wang [10]. In this work, an auto-tuning 
framework that can automatically compute and select 
CUDA parameters for SpMV to obtain the optimal 
performance on specific GPUs is presented. The framework 
was evaluated on two NVIDIA GPU platforms viz. 
GeForce 9500 GTX and GeForce GTX 295. It was found 
that, for GeForce 9500 GTX, the auto-tuning framework 
had 237% performance improvement on the average, and 

the median improvement was 278% and for GeForce GTX 
295, the auto-tuning framework had 33% performance 
improvement on the average, and the median improvement 
was 25.6%, as compared to NVIDIA’s implementation, for 
both cases. [10]. 
    F. Vazquez et al. [11]. In this work, new implementations 
of SpMV for GPUs called ELLR-T is proposed and 
evaluated. They are based on the format ELLPACK-R, 
which allows storage of the sparse matrix in a regular 
manner.  The comparative evaluation with other systems 
showed that the performance achieved by ELLR-T was the 
best after an extensive study on a set of representative test 
matrices. A comparison of ELLR-T on a GeForce GTX 285 
had revealed that acceleration factors of up to 30x can be 
achieved in comparison to optimized implementations of 
SpMV which exploit state-of-the-art superscalar processors. 
[11].  
    D. Grewe and A. Lokhmotov [12]. In this work, a 
system-independent representation of sparse matrix formats 
is presented. It allowed a compiler to generate efficient, 
system-specific code for sparse matrix operations. To show 
the viability of such a representation a compiler that 
generates and tunes code for sparse matrix-vector 
multiplication (SpMV) on GPUs was developed. 
Additionally, the format description also can be used to 
automatically generate vectorized code to fully exploit the 
capabilities of vector-architectures. The framework was 
evaluated on six state-of-the-art matrix formats and it was 
found that the generated code performed similar to or better 
than hand-optimized code. It was observed that for every 
single matrix the vector version clearly outperformed the 
scalar version, with speedups of up to a factor of 4. The 
average performance gain of vectorizing the code were 1.6x 
(geometric mean). [12]. 
    Z. Wang et al. [13]. In this work, optimized 
implementation of sparse matrix-vector multiplication on 
NVIDIA GPUs using CUDA programming model is 
presented. Three optimizations including: optimized CSR 
storage format, optimized threads mapping, and avoid 
divergence judgment are outlined to improve the 
performance of SpMV kernels. The optimizations were 
evaluated on GeForce 9600 GTX, connected to Windows 
XP 64-bit system. In comparison with NVIDIA's SpMV 
library and NVIDIA's CUDDPA library, it was observed 
that the results showed that optimizing sparse matrix-vector 
multiplication on CUDA achieved better performance than 
other SpMV implementations. [13]. 
    X. Yang et al. [14]. In this work, a novel non-parametric 
and self-tunable approach to data representation for 
computing SpMV, particularly targeting sparse matrices 
representing power-law graphs is presented. It was 
observed that by using the real web graph data, the 
representation scheme, coupled with a novel tiling 
algorithm, yielded significant benefits over the state of the 
art GPU efforts on a number of core data mining algorithms 
such as PageRank, HITS and Random Walk with Restart. 
On these algorithms, it was observed that the best kernel 
was 1.8 to 2.1 times faster than an industrial strength GPU 
competitor and from 18 to 32 times faster than a similar 
CPU implementation. [14]. 
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    S. Williams et al. [23]. In this work, sparse matrix-vector 
multiply (SpMV) is examined across a broad spectrum of 
multicore designs. The experiments were evaluated on the 
homogeneous AMD dual-core and Intel quad-core designs, 
the heterogeneous STI Cell, as well as the first scientific 
study of the highly multithreaded Sun Niagara2 platforms. 
Several optimization strategies effective for the multicore 
environment are presented, and significant performance 
improvements compared to existing state-of-the-art serial 
and parallel SpMV implementations are demonstrated. [23]. 
 
C. SpMV Performance Modelling Techniques 
   There is extensive work on performance models.  
   P. Guo and L. Wang [3]. This work presents an integrated 
analytical and profile-based CUDA performance modelling 
approach that accurately predicts the kernel execution times 
of sparse matrix-vector multiplication for CSR, ELL, COO, 
and HYB SpMV CUDA kernels. The experiments were 
conducted on a collection of 8 widely-used testing matrices 
on NVIDIA Tesla C2050 and the execution times predicted 
by the model matched the measured execution times of 
NVIDIA’s SpMV implementations. For 29 out of 32 test 
cases, the performance differences were observed under or 
around 7%. For the rest 3 test cases, the differences were 
observed between 8% and 10%. For CSR, ELL, COO, and 
HYB SpMV kernels, the differences were observed as 4.2%, 
5.2%, 1.0%, and 5.7% on the average, respectively. [3]. 
     S. Ryoo et al. [15]. In this work, two metrics i.e., 
efficiency and utilization are introduced to reduce 
optimization space. The model focuses on pruning 
optimization space to reduce tuning time for a program. An 
approach for attacking the complexity of optimizing code 
for the NVIDIA GeForce 8 Series is proposed. Because 
predicting the performance effects of program 
optimizations is difficult, developers or compilers may need 
to experiment to find the configuration with the best 
performance. By plotting the configurations and examining 
only those configurations on a Pareto-optimal curve, the 
search space was ably reduced by up to 98% without 
missing the configuration with the highest performance. 
[15]. 
    J.W. Choi, A. Singh, and R.W. Vuduc [16]. In this work, 
a performance model-driven framework for automated 
performance tuning (autotuning) of sparse matrix-vector 
multiply (SpMV) on systems accelerated by graphics 
processing units (GPU) is presented. The study consists of 
two parts. First, several carefully hand-tuned SpMV 
implementations for GPUs is described, identifying key 
GPU-specific performance limitations, enhancements, and 
tuning opportunities. It was observed that these 
implementations, that included variants on classical blocked 
compressed sparse row (BCSR) and blocked ELLPACK 
(BELLPACK) storage formats, matched or exceeded state-
of-the-art implementations. It was observed that the best 
BELLPACK implementation achieved up to 29.0 Gflop/s in 
single-precision and 15.7 Gflop/s in double precision on the 
NVIDIA T10P multiprocessor (C1060), enhancing prior 
state-of-the-art unblocked implementations by up to 1.8x 
and 1.5x for single- and double precision respectively. 
However, achieving this level of performance required 

input matrix-dependent parameter tuning. Thus, in the 
second part of the study, a performance model that guided 
tuning was developed. This model required offline 
measurements and run-time estimation, but more directly 
modelled the structure of multithreaded vector processors 
like GPUs. It was observed that the model could identify 
the implementations that achieved within 15% of those 
found through exhaustive search. [16]. 
    D. Schaa and D. Kaeli [17]. In this work, a modelling 
framework is designed that produces accurate estimates 
when moving single-GPU applications to a multiple-GPU 
platform. The approach develops a set of performance 
equations that capture many of the latencies and 
dependencies introduced in a multiple-GPU environment. 
The system was tested on six applications and the execution 
time across multiple GPU applications with an average 
difference of 11% was estimated when compared to actual 
execution times. The validation study included applications 
that have a wide range of execution durations. [17]. 
    S. Xu, W. Xue, and H. Lin [18]. In this work, 
optimization of SpMV based on ELLPACK from two 
aspects: (a) enhanced performance for the dense vector by 
reducing cache misses, and (b) reduce accessed matrix data 
by index reduction, is proposed. With matrix bandwidth 
reduction techniques, both cache usage enhancement and 
index compression can be enabled. For GPU with better 
cache support, differentiated memory access scheme to 
avoid contamination of caches by matrix data is proposed. 
Performance evaluation showed that the combined 
speedups of proposed optimizations for GT-200 are 16% 
(single-precision) and 12.6% (double-precision) for GT-200 
GPU, and 19% (single-precision) and 15% (double-
precision) for GF-100 GPU. [18]. 
    Y. Zhang and J. D. Owens [19]. In this work, a 
microbenchmark-based performance model for NVIDIA 
GeForce 200-series GPUs is developed. The model 
identifies GPU program bottlenecks and quantitatively 
analyses performance, and thus allows programmers and 
architects to predict the benefits of potential program 
optimizations and architectural improvements. The 
microbenchmark-based approach is used to develop a 
throughput model for three major components of GPU 
execution time: the instruction pipeline, shared memory 
access, and global memory access. Because the model is 
based on the GPU’s native instruction set, the performance 
can be predicted with a 5–15% error. To demonstrate the 
usefulness of the model, three representative real-world and 
already highly-optimized programs: dense matrix multiply, 
tridiagonal systems solver, and sparse matrix vector 
multiply were analysed. The model provided detailed 
quantitative analysis on performance, which enabled 
understanding of the configuration of the fastest dense 
matrix multiply implementation and to optimize the 
tridiagonal solver and sparse matrix vector multiply by 60% 
and 18% respectively. [19]. 
    S.S. Baghsorkhi et al. [20]. In this work, a compiler-
based approach to application performance modelling on 
GPU architectures is presented. The model is equipped with 
an efficient symbolic evaluation module to determine the 
effects of the structural conditions and complex memory 
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access expressions on the performance of a GPU kernel. 
This approach combines the effects of different 
performance factors into a coherent framework. In cases 
where it cannot statically determine performance 
information, a parametric latency is derived which can be 
customized later, according to the kernel inputs. In the case 
of data dependent conditions or access patterns, it employs 
a light-weight dynamic instrumentation approach to 
specialize the parametric latency. This model allows a 
compiler to determine the relative merits of parallel kernel 
configurations without running all the variations. Also, the 
model identifies the bottlenecks and can guide the compiler 
through the optimization process. The performance model 
was validated on the NVIDIA GPUs using CUDA for the 
matrix multiply, prefix sum scan, FFT, and sparse matrix-
vector benchmarks. The evaluation showed that there was 
good agreement between predicted and observed 
performance rankings for the various tuning versions of 
these kernels and that the model captured the effect of all 
major performance factors for GPU architecture. [20]. 
     S. Hong and H. Kim [21]. This work proposes and 
evaluates a memory parallelism aware analytical model that 
estimates execution cycles for the GPU architecture. The 
key idea of the analytical model is to find the maximum 
number of memory warps that can execute in parallel, a 
metric which is called MWP, to estimate the effective 
memory instruction cost. The model calculates the 
estimated CPI, that provides a simple performance 
estimation metric for programmers and compilers to decide 
whether they should perform certain optimizations or not. 
The evaluations show that the geometric mean of absolute 
error of the analytical model on microbenchmarks is 5.4% 
and on GPU computing applications is 13.3%. [21]. 
     K. Kothapalli et al. [22]. This work presents a 
performance model that combines several known models of 
parallel computation viz. BSP, PRAM, and QRQW. The 
model encompasses the various facets of the GPU 
architecture like scheduling, memory hierarchy and 
pipelining among others. The usage of the model and its 
accuracy was illustrated with three case studies viz. Matrix 
Multiplication, List Ranking, and histogram generation. [22] 

III. PROPOSED SYSTEM 

System proposes an integrated analytical and profile based 
performance modelling that accurately predicts the kernel 
execution time of various SpMV CUDA kernels and also 
that of a given target sparse-matrix. Based on this the 
designed optimal solution auto-selection algorithm 
automatically reports the SpMV optimal solution for a 
target sparse-matrix. System was evaluated on NVIDIA 
Tesla C2050 and significant results were obtained 
[1].Proposed system would like enhance the existing system 
by trying the same on different SpMV CUDA kernels as 
well look for optimization. Proposed system would also like 
to try and execute the same on multi-GPU kernels. 
Proposed system would also like to evaluate the existing 
system on other NVIDIA GPU cards such as NVIDIA 
GeForce GT 750M Notebook GPU. 
 

IV. CONCLUSIONS 

Sparse matrix thus is a matrix which has very few nonzero 
elements. Sparse-matrix vector multiplication is a tedious 
operation and when carried out iteratively becomes more 
difficult. GPU eases this job however efficient storage 
strategies, performance modelling and optimization 
techniques are needed. Various SpMV CUDA kernels have 
been proposed in this regard however still significant 
achievement is not seen. System proposes and integrated 
performance modelling and optimization analysis system 
for SpMV CUDA kernels. Proposed system will enhance 
the existing system and evaluate it on different NVIDIA 
GPU card such as GeForce GT 750M and also try and 
extend it to multi-GPU kernels.  A detailed survey of all 
possible SpMV performance modelling and optimization 
techniques is presented in this work. We assume that the 
above survey helps to better understand SpMV CUDA 
kernel and it implementation including its performance 
modelling and its optimization in a better way.  
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